Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602485

RESUMO

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Assuntos
Diferenciação Celular , Via de Sinalização Hippo , Morfogênese , Miofibroblastos , Proteínas Serina-Treonina Quinases , Alvéolos Pulmonares , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Morfogênese/genética , Mesoderma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Pulmão/metabolismo , Organogênese/genética , Regulação da Expressão Gênica no Desenvolvimento
2.
J Phys Chem B ; 128(16): 3795-3806, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38606592

RESUMO

The Hippo signaling pathway is a highly conserved signaling network that plays a central role in regulating cellular growth, proliferation, and organ size. This pathway consists of a kinase cascade that integrates various upstream signals to control the activation or inactivation of YAP/TAZ proteins. Phosphorylated YAP/TAZ is sequestered in the cytoplasm; however, when the Hippo pathway is deactivated, it translocates into the nucleus, where it associates with TEAD transcription factors. This partnership is instrumental in regulating the transcription of progrowth and antiapoptotic genes. Thus, in many cancers, aberrantly hyperactivated YAP/TAZ promotes oncogenesis by contributing to cancer cell proliferation, metastasis, and therapy resistance. Because YAP and TAZ exert their oncogenic effects by binding with TEAD, it is critical to understand this key interaction to develop cancer therapeutics. Previous research has indicated that TEAD undergoes autopalmitoylation at a conserved cysteine, and small molecules that inhibit TEAD palmitoylation disrupt effective YAP/TAZ binding. However, how exactly palmitoylation contributes to YAP/TAZ-TEAD interactions and how the TEAD palmitoylation inhibitors disrupt this interaction remains unknown. Utilizing molecular dynamics simulations, our investigation not only provides detailed atomistic insight into the YAP/TAZ-TEAD dynamics but also unveils that the inhibitor studied influences the binding of YAP and TAZ to TEAD in distinct manners. This discovery has significant implications for the design and deployment of future molecular interventions targeting this interaction.


Assuntos
Lipoilação , Simulação de Dinâmica Molecular , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Humanos , Regulação Alostérica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Sinalização YAP/metabolismo , Ligação Proteica , Fatores de Transcrição de Domínio TEA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Transativadores/metabolismo , Transativadores/química , Transativadores/antagonistas & inibidores , Aciltransferases/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/química
3.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579685

RESUMO

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proliferação de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/agonistas , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
4.
Commun Biol ; 7(1): 497, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658677

RESUMO

Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.


Assuntos
Acrilamidas , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Indóis , Neoplasias Pulmonares , Mutação , Pirimidinas , Fatores de Transcrição , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Gefitinibe/farmacologia , Via de Sinalização Hippo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas
5.
Clin Transl Med ; 14(4): e1658, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659080

RESUMO

BACKGROUND: Chordoma, a rare bone tumour with aggressive local invasion and high recurrence rate with limited understanding of its molecular mechanisms. Circular RNAs (circRNAs) have been extensively implicated in tumorigenesis, yet their involvement in chordoma remains largely unexplored. N6-methyladenosine (m6A) modification holds a crucial function in regulating protein translation, RNA degradation and transcription. METHODS: Initially, screening and validation of circTEAD1 in chordoma were conducted by high-throughput sequencing. Subsequently, sh-circTEAD1 and an overexpression plasmid were constructed. Colony formation assays, cell counting kit-8, Transwell and wound healing assays were utilized to validate the function of circTEAD1 in vitro. RNA pull-down assays identified the binding proteins of circTEAD1, which underwent verification through RNA immunoprecipitation (RIP). Methylated RIP assays were conducted to detect the m6A binding sites. Following this, luciferase assay, RT-qPCR, RIP and Western blotting analyses were conducted, revealing that Yap1 was the direct target of circTEAD1. Afterwards, the same methods were utilized for the validation of the function of Yap1 in chordoma in vitro. Finally, the regulatory relationship between circTEAD1 and Yap1 in chordoma was verified by an in vivo tumour formation assay. RESULTS: CircTEAD1 was identified as an upregulated circRNA in chordoma specimens, with heightened circTEAD1 expression emerging as a prognostic indicator. In vitro experiments convincingly demonstrated that circTEAD1 significantly promoted chordoma cell invasion, migration and aggressiveness. Furthermore, the analysis revealed that methyltransferase-like 3-mediated m6A modification facilitated the cytoplasmic export of circTEAD1. The circTEAD1/IGF2BP3/Yap1 mRNA RNA-protein ternary complex not only bolstered the stability of Yap1 mRNA but also exerted a pivotal role in driving chordoma tumorigenesis. CONCLUSIONS: In this study, the role of m6A-modified circTEAD1 in chordoma was identified. The findings offer novel insights into the potential molecular targets for chordoma therapy, shedding light on the intricate interplay between circRNAs, m6A modification and Yap1 mRNA in chordoma pathogenesis.


Assuntos
Adenosina , Adenosina/análogos & derivados , Cordoma , RNA Circular , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Adenosina/metabolismo , Adenosina/genética , RNA Circular/genética , RNA Circular/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Cordoma/genética , Cordoma/patologia , Cordoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral
6.
Signal Transduct Target Ther ; 9(1): 96, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653754

RESUMO

The translocation of YAP from the cytoplasm to the nucleus is critical for its activation and plays a key role in tumor progression. However, the precise molecular mechanisms governing the nuclear import of YAP are not fully understood. In this study, we have uncovered a crucial role of SOX9 in the activation of YAP. SOX9 promotes the nuclear translocation of YAP by direct interaction. Importantly, we have identified that the binding between Asp-125 of SOX9 and Arg-124 of YAP is essential for SOX9-YAP interaction and subsequent nuclear entry of YAP. Additionally, we have discovered a novel asymmetrical dimethylation of YAP at Arg-124 (YAP-R124me2a) catalyzed by PRMT1. YAP-R124me2a enhances the interaction between YAP and SOX9 and is associated with poor prognosis in multiple cancers. Furthermore, we disrupted the interaction between SOX9 and YAP using a competitive peptide, S-A1, which mimics an α-helix of SOX9 containing Asp-125. S-A1 significantly inhibits YAP nuclear translocation and effectively suppresses tumor growth. This study provides the first evidence of SOX9 as a pivotal regulator driving YAP nuclear translocation and presents a potential therapeutic strategy for YAP-driven human cancers by targeting SOX9-YAP interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Núcleo Celular , Fatores de Transcrição SOX9 , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transporte Ativo do Núcleo Celular/genética , Camundongos , Linhagem Celular Tumoral , Animais , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
7.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488622

RESUMO

The nuclear translocation of YAP1 is significantly implicated in the proliferation, stemness, and metastasis of cancer cells. Although the molecular basis underlying YAP1 subcellular distribution has been extensively explored, it remains to be elucidated how the nuclear localization signal guides YAP1 to pass through the nuclear pore complex. Here, we define a globular type of nuclear localization signal composed of folded WW domains, named as WW-NLS. It directs YAP1 nuclear import through the heterodimeric nuclear transport receptors KPNA-KPNB1, bypassing the canonical nuclear localization signal that has been well documented in KPNA/KPNB1-mediated nuclear import. Strikingly, competitive interference with the function of the WW-NLS significantly attenuates YAP1 nuclear translocation and damages stemness gene activation and sphere formation in malignant breast cancer cells. Our findings elucidate a novel globular type of nuclear localization signal to facilitate nuclear entry of WW-containing proteins including YAP1.


Assuntos
Núcleo Celular , Sinais de Localização Nuclear , Proteínas de Sinalização YAP , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteínas/metabolismo , Domínios WW , Proteínas de Sinalização YAP/química , Proteínas de Sinalização YAP/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
8.
Cell Mol Life Sci ; 81(1): 115, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436764

RESUMO

INTRODUCTION: The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS: To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS: The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION: YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.


Assuntos
Comunicação Celular , Fígado , Proteínas de Sinalização YAP , Animais , Camundongos , Comunicação Celular/genética , Células Endoteliais , Hepatócitos , Ligantes , Fígado/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
9.
Int Immunopharmacol ; 130: 111762, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38428146

RESUMO

Drug-induced liver injury (DILI) is a common and severe adverse drug reaction that can result in acute liver failure. Previously, we have shown that Lycium barbarum L. (wolfberry) ameliorated liver damage in acetaminophen (APAP)-induced DILI. Nevertheless, the mechanism needs further clarification. Herein, we utilized APAP-induced DILI mice to investigate how wolfberry impacts the gut-liver axis to mitigate liver damage. We showed that the abundance of Akkermansia muciniphila (A. muciniphila) was decreased, and intestinal microbiota was disrupted, while the expression levels of YAP1 and FXR-mediated CYP7A1 were reduced in the liver of DILI mice. Furthermore, wolfberry increased the abundance of A. muciniphila and the number of goblet cells in the intestines, while decreasing AST, ALT, and total bile acids (TBA) levels in the serum. Interestingly, A. muciniphila promoted YAP1 and FXR expression in hepatocytes, leading to the inhibition of CYP7A1 expression and a decrease in TBA content. Notably, wolfberry did not exert the beneficial effects mentioned above after the removal of intestinal bacteria by antibiotics (ATB)-containing water. Additionally, Yap1 knockout downregulated FXR expression and enhanced CYP7A1 expression in the liver of hepatocyte-specific Yap1 knockout mice. Therefore, wolfberry stimulated YAP1/FXR activation and reduced CYP7A1 expression by promoting the balance of intestinal microbiota, thereby suppressing the overproduction of bile acids.


Assuntos
Acetaminofen , Akkermansia , Ácidos e Sais Biliares , Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Lycium , Proteínas de Ligação a RNA , Proteínas de Sinalização YAP , Animais , Camundongos , Acetaminofen/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/microbiologia , Fígado , Lycium/química , Proteínas de Sinalização YAP/metabolismo , Proteínas de Ligação a RNA/metabolismo , Camundongos Knockout
10.
Immunohorizons ; 8(2): 198-213, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38392560

RESUMO

Erythroid differentiation regulator 1 (Erdr1) is a stress-induced, widely expressed, highly conserved secreted factor found in both humans and mice. Erdr1 is linked with the Hippo-YAP1 signaling. Initially identified as an inducer of hemoglobin synthesis, Erdr1 emerged as a multifunctional protein, especially in immune cells. Although Erdr1 has been implicated in regulating T cells and NK cell function, its role in macrophage remains unclear. This study explored the function and mechanism of Erdr1 in macrophage inflammatory response. The data demonstrated that Erdr1 could promote anti-inflammatory cytokine production, a function that also has been reported by previous research. However, I found Erdr1 also could play a proinflammatory role. The function of Erdr1 in macrophages depends on its dose and cell density. I observed that Erdr1 expression was inhibited in M1 macrophages but was upregulated in M2 macrophages compared with unpolarized macrophages. I hypothesized that Erdr1 balances the inflammatory response by binding with distinct adaptors dependent on varying concentrations. Mechanistically, I demonstrated YAP1 and Mid1 as the two adaptor proteins of Erdr1. The Erdr1-YAP1 interaction promotes anti-inflammatory cytokine production when Erdr1 levels are elevated, whereas the Erdr1-Mid1 interaction induces proinflammatory cytokine production when Erdr1 levels are decreased. This study highlights the effects of Erdr1 on regulating cytokine production from polarized macrophages potentially by regulating YAP1 in the nonclassical Hippo pathway.


Assuntos
Citocinas , Proteínas de Membrana , Linfócitos T , Ubiquitina-Proteína Ligases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Expressão Gênica , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Membrana/metabolismo
11.
Ann Med ; 56(1): 2313680, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38335557

RESUMO

PURPOSE: To evaluate the role of M2 macrophages in subconjunctival fibrosis after silicone implantation (SI) and investigate the underlying mechanisms. MATERIALS AND METHODS: A model of subconjunctival fibrosis was established by SI surgery in rabbit eyes. M2 distribution and collagen deposition were evaluated by histopathology. The effects of M2 cells on the migration (using wound-scratch assay) and activation (by immunofluorescence and western blotting) of human Tenon's fibroblasts (HTFs) were investigated. RESULTS: There were more M2 macrophages (CD68+/CD206+ cells) occurring in tissue samples around silicone implant at 2 weeks postoperatively. Dense collagen deposition was observed at 8 weeks after SI. In vitro experiment showed M2 expressed high level of CD206 and transforming growth factor-ß1 (TGF-ß1). The M2-conditioned medium promoted HTFs migration and the synthesis of collagen I and fibronectin. Meanwhile, M2-conditioned medium increased the protein levels of TGF-ß1, TGF-ßR II, p-Smad2/3, yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ). Verteporfin, a YAP inhibitor, suppressedTGF-ß1/Smad2/3-YAP/TAZ pathway and attenuated M2-induced extracellular matrix deposition by HTFs. CONCLUSIONS: TGF-ß1/Smad2/3-YAP/TAZ signalling may be involved in M2-induced fibrotic activities in HTFs. M2 plays a key role in promoting subconjunctival fibrosis and can serve as an attractive target for anti-fibrotic therapeutics.


Assuntos
Macrófagos , Fator de Crescimento Transformador beta1 , Animais , Humanos , Coelhos , Colágeno , Meios de Cultivo Condicionados , Fibrose , Macrófagos/metabolismo , Silicones , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
12.
Cardiovasc Toxicol ; 24(2): 158-170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310188

RESUMO

High expression of the zinc finger X-chromosomal protein (ZFX) correlates with proliferation, aggressiveness, and development in many types of cancers. In the current report, we investigated the efficacy of ZFX in mouse pulmonary artery smooth muscle cells (PASMCs) proliferation during pulmonary arterial hypertension (PAH). PASMCs were cultured in hypoxic conditions. Real-time PCR and western blotting were conducted to detect the expression of ZFX. Cell proliferation, apoptosis, migration, and invasion were, respectively, measured by CCK-8, flow cytometry, wound scratchy, and transwell assays. Glycolytic ability was validated by the extracellular acidification rate and oxygen consumption rate. Transcriptome sequencing technology was used to explore the genes affected by ZFX knockdown. Luciferase and chromatin immunoprecipitation assays were utilized to verify the possible binding site of ZFX and YAP1. Mice were subjected to hypoxia for 21 days to induce PAH. The right ventricular systolic pressure (RVSP) was measured and ratio of RV/LV + S was calculated. The results show that ZFX was increased in hypoxia-induced PASMCs and mice. ZFX knockdown inhibited the proliferation, migration, and invasion of PASMC. Using RNA sequencing, we identify glycolysis and YAP as a key signaling of ZFX. ZFX knockdown inhibited Glycolytic ability. ZFX strengthened the transcription activity of YAP1, thereby regulating the YAP signaling. YAP1 overexpression reversed the effect of ZFX knockdown on hypoxia-treated PASMCs. In conclusion, ZFX knockdown protected mice from hypoxia-induced PAH injury. ZFX knockdown dramatically reduced RVSP and RV/(LV + S) in hypoxia-treated mice.


Assuntos
Fatores de Transcrição Kruppel-Like , Hipertensão Arterial Pulmonar , Remodelação Vascular , Proteínas de Sinalização YAP , Animais , Camundongos , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Hipóxia/complicações , Pulmão/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/prevenção & controle , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
13.
Oncogene ; 43(12): 884-898, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308096

RESUMO

The hallmark of epithelial-to-mesenchymal transition (EMT) is the switch from epithelial cadherin (E-cadherin) to neural cadherin (N-cadherin), allowing melanoma cells to form a homotypic N-cadherin-mediated adhesion with stromal fibroblasts. However, how cadherin switching is initiated, maintained, and regulated in melanoma remains elusive. Here, we report a novel mechanism underlying cadherin switching in melanoma cells that is regulated by stromal Yes-associated protein 1 (YAP1) signaling. The progression of a BRAF-mutant mouse melanoma was suppressed in vivo upon YAP1 ablation in cancer-associated fibroblasts (CAFs). On the contrary, overexpressing YAP1 in CAFs accelerated melanoma development. By RNA-Seq, N-cadherin was identified as a major downstream effector of YAP1 signaling in CAFs. YAP1 silencing reduced N-cadherin expression in CAFs, leading to the downregulation of N-cadherin in neighboring melanoma cells. N-cadherin ablation inhibited the PI3K-AKT signaling pathway in melanoma cells and melanoma cell proliferation. The findings suggest that YAP1 depletion in CAFs induces the downregulation of p-AKT signaling in melanoma cells through the N-cadherin-mediated interaction between melanoma cells and CAFs. The data underscore an important role of CAFs in regulating N-cadherin-mediated adhesion and signaling in melanoma and highlight that disentangling cadherin-mediated cell-cell interactions can potentially disrupt tumor-stroma interactions and reverse the tumor cell invasive phenotype.


Assuntos
Caderinas , Fibroblastos Associados a Câncer , Melanoma , Proteínas de Sinalização YAP , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caderinas/genética , Caderinas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Melanoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismo
14.
Curr Eye Res ; 49(5): 524-532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305219

RESUMO

PURPOSE: Diabetic retinopathy (DR) is a major cause of irreversible blindness in the working-age population. Neovascularization is an important hallmark of advanced DR. There is evidence that Yes-associated protein (YAP)/transcriptional co-activator with a PDZ binding domain (TAZ) plays an important role in angiogenesis and that its activity is regulated by vascular endothelial growth factor (VEGF). Therefore, the aim of this study was to investigate the effect of YAP/TAZ-VEGF crosstalk on the angiogenic capacity of human retinal microvascular endothelial cells (hRECs) in a high-glucose environment. METHODS: The expression of YAP and TAZ of hRECs under normal conditions, hypertonic conditions and high glucose were observed. YAP overexpression (OE-YAP), YAP silencing (sh-YAP), VEGF overexpression (OE-VEGF) and VEGF silencing (sh-VEGF) plasmids were constructed. Cell counting kit-8 assay was performed to detect cells proliferation ability, transwell assay to detect cells migration ability, and tube formation assay to detect tube formation ability. The protein expression of YAP, TAZ, VEGF, matrix metalloproteinase (MMP)-8, MMP-13, vessel endothelium (VE)-cadherin and alpha smooth muscle actin (α-SMA) was measured by western blot. RESULTS: The proliferation of hRECs was significantly higher in the high glucose group compared with the normal group, as well as the protein expression of YAP and TAZ (p < 0.01). YAP and VEGF promoted the proliferation, migration and tube formation of hRECs in the high glucose environment (p < 0.01), and increased the expression of TAZ, VEGF, MMP-8, MMP-13 and α-SMA while reducing the expression of VE-cadherin (p < 0.01). Knockdown of YAP effectively reversed the above promoting effects of OE-VEGF (p < 0.01) and overexpression of YAP significantly reversed the inhibition effects of sh-VEGF on above cell function (p < 0.01). CONCLUSION: In a high-glucose environment, YAP/TAZ can significantly promote the proliferation, migration and tube formation ability of hRECs, and the mechanism may be related to the regulation of VEGF expression.


Assuntos
60489 , Retinopatia Diabética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Fator A de Crescimento do Endotélio Vascular , Proteínas de Sinalização YAP , Humanos , 60489/metabolismo , Proliferação de Células , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Retina/metabolismo , Retina/patologia
15.
Adv Sci (Weinh) ; 11(14): e2306827, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308184

RESUMO

Cholesterol metabolism has important roles in maintaining membrane integrity and countering the development of diseases such as obesity and cancers. Cancer cells sustain cholesterol biogenesis for their proliferation and microenvironment reprograming even when sterols are abundant. However, efficacy of targeting cholesterol metabolism for cancer treatment is always compromised. Here it is shown that CSN6 is elevated in HCC and is a positive regulator of hydroxymethylglutaryl-CoA synthase 1 (HMGCS1) of mevalonate (MVA) pathway to promote tumorigenesis. Mechanistically, CSN6 antagonizes speckle-type POZ protein (SPOP) ubiquitin ligase to stabilize HMGCS1, which in turn activates YAP1 to promote tumor growth. In orthotopic liver cancer models, targeting CSN6 and HMGCS1 hinders tumor growth in both normal and high fat diet. Significantly, HMGCS1 depletion improves YAP inhibitor efficacy in patient derived xenograft models. The results identify a CSN6-HMGCS1-YAP1 axis mediating tumor outgrowth in HCC and propose a therapeutic strategy of targeting non-alcoholic fatty liver diseases- associated HCC.


Assuntos
Carcinoma Hepatocelular , Hidroximetilglutaril-CoA Sintase , Neoplasias Hepáticas , Proteínas Repressoras , Proteínas de Sinalização YAP , Humanos , Carcinoma Hepatocelular/metabolismo , Colesterol/metabolismo , Hidroximetilglutaril-CoA Sintase/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Microambiente Tumoral , Ubiquitina/metabolismo , Proteínas de Sinalização YAP/metabolismo
16.
Adv Sci (Weinh) ; 11(16): e2308531, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380551

RESUMO

Gallbladder cancer (GBC) is an extremely lethal malignancy with aggressive behaviors, including liver or distant metastasis; however, the underlying mechanisms driving the metastasis of GBC remain poorly understood. In this study, it is found that DNA methyltransferase DNMT3A is highly expressed in GBC tumor tissues compared to matched adjacent normal tissues. Clinicopathological analysis shows that DNMT3A is positively correlated with liver metastasis and poor overall survival outcomes in patients with GBC. Functional analysis confirms that DNMT3A promotes the metastasis of GBC cells in a manner dependent on its DNA methyltransferase activity. Mechanistically, DNMT3A interacts with and is recruited by YAP/TAZ to recognize and access the CpG island within the CDH1 promoter and generates hypermethylation of the CDH1 promoter, which leads to transcriptional silencing of CDH1 and accelerated epithelial-to-mesenchymal transition. Using tissue microarrays, the association between the expression of DNMT3A, YAP/TAZ, and CDH1 is confirmed, which affects the metastatic ability of GBC. These results reveal a novel mechanism through which DNMT3A recruitment by YAP/TAZ guides DNA methylation to drive GBC metastasis and provide insights into the treatment of GBC metastasis by targeting the functional connection between DNMT3A and YAP/TAZ.


Assuntos
Antígenos CD , Caderinas , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Neoplasias da Vesícula Biliar , Proteínas de Sinalização YAP , Humanos , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/metabolismo , Neoplasias da Vesícula Biliar/patologia , DNA Metiltransferase 3A/metabolismo , DNA Metiltransferase 3A/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Feminino , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Masculino , Linhagem Celular Tumoral , Animais , Metilação de DNA/genética , Metástase Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , Pessoa de Meia-Idade , Transição Epitelial-Mesenquimal/genética , Modelos Animais de Doenças , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
17.
Endocrinology ; 165(3)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366363

RESUMO

Histone deacetylase 11 (HDAC11) has been implicated in the pathogenesis of metabolic diseases characterized by chronic low-grade inflammation, such as obesity. However, the influence of HDAC11 on inflammation and the specific effect of HDAC11 on the palmitic acid (PA)-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation are poorly understood. The effect of PA treatment on HDAC11 activity and the NLRP3 inflammasome was investigated in human peripheral blood mononuclear cells and THP-1 cells. The PA-induced responses of key markers of NLRP3 inflammasome activation, including NLRP3 gene expression, caspase-1 p10 activation, cleaved IL-1ß production, and extracellular IL-1ß release, were assessed as well. The role of HDAC11 was explored using a specific inhibitor of HDAC11 and by knockdown using small interfering (si)HDAC11 RNA. The relationship between HDAC11 and yes-associated protein (YAP) in the PA-induced NLRP3 inflammasome was investigated in THP-1 cells with HDAC11 or YAP knockdown. Following PA treatment, HDAC11 activity and protein levels increased significantly, concomitant with activation of the NLRP3 inflammasome. Notably, PA-induced the upregulation of NLRP3, caspase-1 p10 activation, the production of cleaved IL-1ß, and the release of IL-1ß into the extracellular space, all of which were attenuated by FT895 treatment and by HDAC11 knockdown. In THP-1 cells, PA induced the expression of YAP and its interaction with NLRP3, resulting in NLRP3 inflammasome activation, whereas both were inhibited by FT895 and siHDAC11 RNA. These findings demonstrate a pivotal role for HDAC11 in the PA-induced activation of the NLRP3 inflammasome. HDAC11 inhibition thus represents a promising therapeutic strategy for mitigating NLRP3 inflammasome-related inflammation in the context of obesity.


Assuntos
Histona Desacetilases , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Caspase 1/genética , Caspase 1/metabolismo , Histona Desacetilases/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/genética , Leucócitos Mononucleares , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Obesidade , Palmitatos , Ácido Palmítico/farmacologia , RNA , Células THP-1 , Proteínas de Sinalização YAP/metabolismo
18.
Cancer Commun (Lond) ; 44(3): 361-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407929

RESUMO

BACKGROUND: Lymphatic metastasis is one of the most common metastatic routes and indicates a poor prognosis in clear-cell renal cell carcinoma (ccRCC). N-acetyltransferase 10 (NAT10) is known to catalyze N4-acetylcytidine (ac4C) modification of mRNA and participate in many cellular processes. However, its role in the lymphangiogenic process of ccRCC has not been reported. This study aimed to elucidate the role of NAT10 in ccRCC lymphangiogenesis, providing valuable insights into potential therapeutic targets for intervention. METHODS: ac4C modification and NAT10 expression levels in ccRCC were assessed using public databases and clinical samples. Functional investigations involved manipulating NAT10 expression in cellular and mouse models to study its role in ccRCC. Mechanistic insights were gained through a combination of RNA sequencing, mass spectrometry, co-immunoprecipitation, RNA immunoprecipitation, immunofluorescence, and site-specific mutation analyses. RESULTS: We found that ac4C modification and NAT10 expression levels increased in ccRCC. NAT10 promoted tumor progression and lymphangiogenesis of ccRCC by enhancing the nuclear import of Yes1-associated transcriptional regulator (YAP1). Subsequently, we identified ankyrin repeat and zinc finger peptidyl tRNA hydrolase 1 (ANKZF1) as the functional target of NAT10, and its upregulation in ccRCC was caused by NAT10-mediated ac4C modification. Mechanistic analyses demonstrated that ANKZF1 interacted with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) to competitively inhibit cytoplasmic retention of YAP1, leading to transcriptional activation of pro-lymphangiogenic factors. CONCLUSIONS: These results suggested a pro-cancer role of NAT10-mediated acetylation in ccRCC and identified the NAT10/ANKZF1/YAP1 axis as an under-reported pathway involving tumor progression and lymphangiogenesis in ccRCC.


Assuntos
Proteínas 14-3-3 , Carcinoma de Células Renais , Proteínas de Transporte , Neoplasias Renais , Acetiltransferases N-Terminal , Proteínas de Sinalização YAP , Animais , Camundongos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Linfangiogênese/genética , Processos Neoplásicos , Proteínas de Transporte/metabolismo , Acetiltransferases N-Terminal/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas de Sinalização YAP/metabolismo
19.
Adv Sci (Weinh) ; 11(13): e2307050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38273642

RESUMO

Bone fracture healing is regulated by mechanobiological cues. Both, extracellular matrix (ECM) deposition and microvascular assembly determine the dynamics of the regenerative processes. Mechanical instability as by inter-fragmentary shear or compression is known to influence early ECM formation and wound healing. However, it remains unclear how these external cues shape subsequent ECM and microvascular network assembly. As transcriptional coactivators, the mechanotransducers yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) translate physical cues into downstream signaling events, yet their role in sprouting angiogenesis into the hematoma after injury is unknown. Using bone healing as model system for scar-free regeneration, the role of endothelial YAP/TAZ in combination with tuning the extrinsic mechanical stability via fracture fixation is investigated. Extrinsically imposed shear across the gap delayed hematoma remodeling and shaped the morphology of early collagen fiber orientations and microvascular networks, suggesting that enhanced shear increased the nutrient exchange in the hematoma. In contrast, endothelial YAP/TAZ deletion has little impact on the overall vascularization of the fracture gap, yet slightly increases the collagen fiber deposition under semi-rigid fixation. Together, these data provide novel insights into the respective roles of endothelial YAP/TAZ and extrinsic mechanical cues in orchestrating the process of bone regeneration.


Assuntos
Hematoma , Mecanotransdução Celular , Colágeno/metabolismo , Mecanotransdução Celular/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Consolidação da Fratura/fisiologia , Humanos , Hematoma/metabolismo , Hematoma/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia
20.
Nature ; 626(7999): 635-642, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297127

RESUMO

Type 2 diabetes mellitus is a major risk factor for hepatocellular carcinoma (HCC). Changes in extracellular matrix (ECM) mechanics contribute to cancer development1,2, and increased stiffness is known to promote HCC progression in cirrhotic conditions3,4. Type 2 diabetes mellitus is characterized by an accumulation of advanced glycation end-products (AGEs) in the ECM; however, how this affects HCC in non-cirrhotic conditions is unclear. Here we find that, in patients and animal models, AGEs promote changes in collagen architecture and enhance ECM viscoelasticity, with greater viscous dissipation and faster stress relaxation, but not changes in stiffness. High AGEs and viscoelasticity combined with oncogenic ß-catenin signalling promote HCC induction, whereas inhibiting AGE production, reconstituting the AGE clearance receptor AGER1 or breaking AGE-mediated collagen cross-links reduces viscoelasticity and HCC growth. Matrix analysis and computational modelling demonstrate that lower interconnectivity of AGE-bundled collagen matrix, marked by shorter fibre length and greater heterogeneity, enhances viscoelasticity. Mechanistically, animal studies and 3D cell cultures show that enhanced viscoelasticity promotes HCC cell proliferation and invasion through an integrin-ß1-tensin-1-YAP mechanotransductive pathway. These results reveal that AGE-mediated structural changes enhance ECM viscoelasticity, and that viscoelasticity can promote cancer progression in vivo, independent of stiffness.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Elasticidade , Matriz Extracelular , Cirrose Hepática , Neoplasias Hepáticas , Animais , Humanos , beta Catenina/metabolismo , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colágeno/química , Colágeno/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Matriz Extracelular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Integrina beta1/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Viscosidade , Proteínas de Sinalização YAP/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...